Linear-Time Algorithms for Scattering Number and Hamilton-Connectivity of Interval Graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear-Time Algorithms for Scattering Number and Hamilton-Connectivity of Interval Graphs

We show that for all k ≤ −1 an interval graph is −(k + 1)Hamilton-connected if and only if its scattering number is at most k. We also give an O(n +m) time algorithm for computing the scattering number of an interval graph with n vertices and m edges, which improves the O(n) time bound of Kratsch, Kloks and Müller. As a consequence of our two results the maximum k for which an interval graph is...

متن کامل

META-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS

The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...

متن کامل

Linear-Time Algorithms for the Paired-Domination Problem in Interval Graphs and Circular-Arc Graphs

In a graph G, a vertex subset S ⊆ V (G) is said to be a dominating set of G if every vertex not in S is adjacent to a vertex in S. A dominating set S of a graph G is called a paired-dominating set if the induced subgraph G[S] contains a perfect matching. The paired-domination problem involves finding a smallest paired-dominating set of G. Given an intersection model of an interval graph G with ...

متن کامل

Linear-Time Recognition of Probe Interval Graphs

The interval graph for a set of intervals on a line consists of one vertex for each interval, and an edge for each intersecting pair of intervals. A probe interval graph is a variant that is motivated by an application to genomics, where the intervals are partitioned into two sets: probes and non-probes. The graph has an edge between two vertices if they intersect and at least one of them is a ...

متن کامل

The neighbor-scattering number can be computed in polynomial time for interval graphs

Neighbor-scattering number is a useful measure for graph vulnerability. For some special kinds of graphs, explicit formulas are given for this number. However, for general graphs it is shown that to compute this number is NP-complete. In this paper, we prove that for interval graphs this number can be computed in polynomial time. Keyworks: neighbor-scattering number, interval graph, consecutive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Graph Theory

سال: 2014

ISSN: 0364-9024

DOI: 10.1002/jgt.21832